Wednesday, March 27, 2024

‘Striving for a cure’: highlights from the 19th Annual Huntington’s Disease Therapeutics Conference

 

Progress towards effective treatments for Huntington’s disease relies on the affected families’ collaboration with researchers exploring the frontiers of science.

 

The potentially pathbreaking findings featured at the recently completed 19th Annual HD Therapeutics Conference, sponsored by the nonprofit CHDI Foundation, Inc., led CHDI Chief Scientific Officer Robert Pacifici, Ph.D., to declare that the community will achieve therapies.

 

In this article I highlight the scientists’ work with a photo essay on their conference presentations and some of their key observations.

 

I cover most of the presentations. For detailed reports on the conference, see the articles in HDBuzz by clicking here, here, and here. Later CHDI will post videos of the presentations on its website. It is also preparing a video “postcard” of the event.

 


In recent decades, Huntington’s breakthroughs have resulted from the increasing amount of human data, which Dr. Pacifici and other scientists say is the best way to study the disease and develop potential therapies. The presentations at this conference especially reflected this trend. Researchers such as Matthew Baffuto, B.S., of the Heintz Lab at The Rockefeller University (in the photo above), recognized the importance of postmortem donations of HD-affected individuals’ brains and other human samples for their research. Baffuto’s final slide included a dedication: “To the HD patients and families who make this human research possible and for whom we continue to strive for a cure.” (All photos by Gene Veritas, aka Kenneth P. Serbin) (Click on an image to make it larger.)

 


The first wave of attempts by pharmaceutical companies to defeat Huntington’s has involved attempts to lower the amount of the abnormal huntingtin protein (HTT) in patients’ brains. In many of these approaches, this also means lowering the amount of normal HTT. The lab of Jeff Carroll, Ph.D., a scientist at the University of Washington and a HD gene expansion carrier like me, has extensively studied huntingtin lowering in mice. Normal huntingtin is necessary for adult mice to function, Dr. Carroll observed. Huntingtin lowering is not a “bad idea, just that there’s a floor between 50 percent and zero percent HTT,” he said.

 


Tony Reiner, Ph.D., of the University of Tennessee Health Science Center, presented the latest findings of his work comparing HD mouse brains to human tissue from deceased HD-affected individuals. He also focuses on how HD affects the various regions of the brain differently. This photo illustrates how Dr. Reiner uses antibodies to measure the complications that arise in HD mouse brains.

 


Sarah Tabrizi, M.D., Ph.D., of University College London, discussed her lab’s research on somatic expansion, the tendency of the abnormal huntingtin gene to expand with time and become more harmful to the brain. She presented data on developing drugs to interact with modifier genes, which can impact somatic expansion and therefore the age of disease onset. Dr. Tabrizi focused on the modifier gene MSH3 as an ideal therapeutic target. For this research, the Tabrizi lab has utilized stem cells, CRISPR gene editing techniques, and antisense oligonucleotides, used in huntingtin lowering drug programs and other HD research projects.

 


Ricardo Mouro Pinto, Ph.D., of Harvard University Medical School, presented his lab’s work on genetic modifiers of somatic expansion. Dr. Pinto has implicated the so-called DNA mismatch repair pathway as a critical driver of somatic expansion. His lab is also developing CRISPR-based strategies as potential therapies. Dr. Pinto’s team was recently awarded a grant from the Hereditary Disease Foundation to continue the search for therapies.

 


Mark D. Bevan, Ph.D., of Northwestern University, spoke on his lab’s latest findings in HD mice, in particular the dysregulation and rescue of subthalamic nucleus, involved in the suppression of movement. Dr. Bevan highlighted the need for both huntingin-lowering and somatic expansion therapies to have widespread delivery into the brain.

 


Osama Al-Dalahmah, M.D., Ph.D., of the Columbia University Irving Medical Center, discussed the major role of astrocytes in HD. There are over 100 different brain cell types. Astrocytes are cells that provide physical and chemical support to other cells such as neurons, key in the brain. As a neuropathologist, Dr. Al-Dalahmah analyzes post-mortem brain tissues. Among other observations, he noted that astrocytes can be neuroprotective. His lab is working on ways to protect neurons in HD.

 


Scientist Baffuto’s wide-ranging presentation focused on specifying cell types in unraveling both the molecular mechanisms underlying somatic expansion and also the path of the disease. The Rockefeller team developed what it describes as an “innovative methodology” for deep profiling of cellular processes in the brain. The technique is fluorescence-activated nuclear sorting (FANS). As shown in one of Baffuto’s slides, they used FANS to detail the disease process in key areas of postmortem HD-afflicted brains: the striatum, cortex, thalamus, hippocampus, amygdala, and cerebellum.

 


Scientists continue to debate exactly what triggers Huntington’s. Assessing the impact of somatic expansion, the Harvard University Medical School team studying HD proposed a potential new timeline for disease onset. Bob Handsaker, B.S., explained that, until recently, scientists thought that onset occurred when the toxic repeat of the DNA letter CAG – the main cause of HD – was over 40 but generally less than 100. New research has demonstrated that the actual path of onset begins as a “slowly ticking DNA clock” over decades. In a few years, when somatic expansion begins, the clock ticks “rapidly,” reaching a threshold of 150 repeats. Then, in a matter of just months, the CAG expansion can go to over 400 repeats, producing a toxic gene, RNA, and protein. Along with other research presented, this finding underscored the need to intervene therapeutically as early as possible in an HD person’s life and to block somatic expansion.

 


Darren G. Monckton, Ph.D., of the University of Glasgow, presented his new research on biomarkers, signs of a disease and indicators of whether a drug has efficacy. Dr. Monckton focused on biomarkers in areas of the body outside the brain such as blood, in particular regarding the degree of somatic expansion and measuring it over time.

 


Carlos Bustamente, Ph.D., a Venezuelan American geneticist and the founder and CEO of Galatea Bio, Inc., advocated for enabling precision medicine around the globe. Dr. Bustamante observed that new technological advances have made it faster and less expensive to understand human genomes but most of such resources have gone to understanding predominantly northern European communities. He pointed out the need to expand the genetic dataset to other parts of the globe. Dr. Bustamante also explained how genetic differences in the global population have contributed to differences in the geographic prevalence of Huntington's.

 


David Margolin, M.D., Ph.D., the vice president for clinical development at uniQure, presented an update on the early-stage (Phase 1/2) clinical trial of the company’s gene therapy drug, AMT-130, involving 39 trial volunteers in the U.S. and Europe. Dr. Margolin reported that, relative to baseline, volunteers treated with AMT-130 showed evidence of preserved neurological function. So far, the drug has proved to be safe.

 


Amy-Lee Bredlau, M.D., the senior medical director at PTC Therapeutics, presented interim safety and biomarker data for the company’s huntingtin-lowering pill, PT-518, in PIVOT-HD, a Phase 2 trial. At this stage, the drug has been shown to be safe and has achieved a lowering of huntingtin in the blood – although data do not yet show whether the lowering is also occurring in the brain.

 


From left to right, Roche researchers Jonas Dorn, Ph.D., Peter McColgan, M.D., Ph.D., and Marcelo Boareto, Ph.D., reanalyzed the data from the firm’s first attempt at a Phase 3 huntingtin-lowering trial program, which in 2021 ended without the drug tominersen showing the necessary efficacy for approval as a drug. The scientists discussed ways to improve clinical trial design, including for GENERATION HD2, a less ambitious, Phase 2 trial of tominersen in a smaller number of volunteers. GENERATION HD2 is in progress.

Saturday, March 02, 2024

Huntington’s disease community will 'get there' in search for therapies, CHDI chief scientist declares after ‘terrific’ conference

 

After presiding over a “terrific” research conference, CHDI Foundation Chief Scientific Officer Robert Pacifici, Ph.D., declared that the Huntington’s disease community will “get there” in the search for long-awaited therapies.

 

Dr. Pacifici commented in an interview with me on March 1, after the CHDI-sponsored 19th Annual HD Therapeutics Conference, held in Palm Springs, CA, from February 26-29.

 

The CHDI chief scientific officer (CSO) provided his optimistic assessment in referencing the featured presentation by David Altshuler, M.D., Ph.D., CSO of the Boston-based Vertex Pharmaceuticals.

 

“They’ve solved some unbelievably difficult problems,” Dr. Pacifici said of Vertex, noting that it found a cure for hepatitis C.

 

Vertex has also developed therapies for three tough diseases that, like HD, are genetic: cystic fibrosis, sickle cell disease, and transfusion-dependent beta thalassemia.

 

At future therapeutics conferences, “we would love for the last talk” to focus on a new drug that is “now going to be approved,’” Dr. Pacifici told me.

 

“We’re going to get there,” he continued. Dr. Altshuler, who Dr. Pacifici said carefully calibrates his optimism, “was very complimentary and very confident that if we stay on this path, we’ll actually achieve that. He felt that the collective efforts that CHDI is trying to catalyze throughout the community are going to be successful.”

 

Dr. Pacifici pointed out how CHDI has adhered to another key principle of drug discovery emphasized by Dr. Althsuler: studying HD in human cells, tissues, and postmortem samples.

 

Dr. Pacifici said he expects the HD field will hear more from Dr. Altshuler and welcomed Vertex’s possible revived involvement.

 

In 2010 I spoke on my family’s fight against HD at the Vertex labs in San Diego and chronicled its search at the time for an HD therapy, though so far without results reported by that lab.

 


Dr. David Altshuler presenting a timeline of Huntington's disease scientific landmarks at the 19th Annual Therapeutics Conference, February 28, 2024. Pictured in the slide is James Gusella, Ph.D., whose lab discovered the huntingtin genetic marker in 1983 and the gene in 1993 (photo by Gene Veritas, aka Kenneth P. Serbin, and posted with permission of CHDI Foundation). (Click on the image to make it larger.)

 

The need to celebrate milestones

 

“But I think what you will see is incremental successes,” Dr. Pacifici continued. “We’re going to have these new findings, these critical milestones and stepping stones along the way that we should embrace and celebrate and use those as a source of hope that, even though it never moves as fast as we would like, we’re making very real, tangible progress”

 

Dr. Pacifici described the 19th conference as “terrific,” noting that more than 450 people – a record – 50 companies, and 70 academic institutions took part. He recalled how no biopharma firms attended the first few conferences. Now such companies “come to a conference because they think an area is ripe for discovery,” he observed.

 

“Everybody commented on how quickly the conference went this year,” Dr. Pacifici said. “There was just so much information and so much happening and actually people were sad when it was over.”

 

I found this, my twelfth CHDI conference, particularly exhilarating because of the amount of new data and the high quality of the presentations.

 

A virtual nonprofit biotech, CHDI is the largest private funder of HD research. As in our interviews at past therapeutics conferences, Dr. Pacifici summarized the key findings of the scientists’ presentations. Watch our 39-minute interview in the video below.

 


 

Key developments

 

Dr. Pacifici explained several key developments.

 

The session on new data and insights into the basic biology of HD included presentations that help “to understand exactly how we can custom craft the profile of candidate drugs to make sure that they hit the right things and are as safe as possible,” Dr. Pacifici said. Such crafting would mean that drugs could effectively address the numerous specific problems in HD, he added.

 

Another session “shined a bright light” on DNA repair, modifier genes, and somatic instability, the tendency of the deleterious expansion of the DNA to worsen with age and therefore trigger disease onset, Dr. Pacifici said. The new findings can contribute to the ongoing effort to “manipulate” these processes to slow or stop instability and therefore prevent the disease, he explained.

 

Including talks detailing HD at the cellular and molecular level, the session titled “It’s a Brain Disease” was “unbelievably informative” about specifying how HD harms the brain, Dr. Pacifici said.

 

Clinical trial news and the importance of participation in research

 

The final session featured clinical trial updates from uniQure, PTC Therapeutics, and Roche. None of these has yet reached Phase 3, the definitive test of a drug.

 

Referring to the 2021 results of Roche’s first attempt at a Phase 3 trial, Dr. Pacifici noted that the firm’s scientists “have really gone to town and reanalyzed the samples, reanalyzed the data in a way that is hopefully going to teach us not only why that particular trial didn’t meet its endpoints” but also “what we can do differently.” Roche’s reassessment of its drug, tominersen, in a Phase 2 trial, GENERATION HD2, is in progress.

 

Ultimately, the field needs a “conveyor belt” of new drug possibilities to develop the multiple kinds of drugs necessary for treating different aspects of HD, Dr. Pacifici concluded. Not all those new drugs will be successful, he said, but the more produced, the greater likelihood for successful therapies.

 

Dr. Pacifici pointed out that many of the discoveries discussed at the meeting resulted from the human data collected from tens of thousands of research volunteers.

 

Future projects and breakthroughs will continue to rely on large numbers of participants, he said. Some individuals may carry unique genetic characteristics revealing new kinds of therapies.

 

“Hang in there,” Dr. Pacifici said in his closing comment for the HD community. “I hope that next year at the 20th [conference] we’ll have some more good news to communicate.”

 

Stay tuned for further news from the conference!

Tuesday, February 27, 2024

At CHDI conference, advocates inspire acceleration of quest for Huntington’s disease therapies

 

With a record 420-plus participants, the 19th Annual Huntington’s Disease Therapeutics Conference got under way on February 26 with the aim of speeding the quest for therapies to slow, halt, or reverse the symptoms of this incurable disorder.

 

Sponsored by CHDI Foundation, Inc., the largest private funder of HD research, the event runs through February 29 at the Parker hotel in Palm Springs, CA, and will feature three days of scientific and clinical presentations.

 

“In recent years the quest for HD therapeutics that will make a real difference to affected families has accelerated and deepened,” CHDI Chief Scientific Officer Robert Pacifici, Ph.D., wrote in a welcome letter to the participants. “Accelerated in the sense that every week seems to bring new scientific insight, whether from publications or reports on new and ongoing clinical initiatives. Deepened in the sense of the sophistication of our understanding of the underlying HD biology that informs our drug development work.”

 

HD research has also “broadened,” Dr. Pacifici added, noting that participants are displaying a record 140-plus posters. Representatives from 55 pharmaceutical and biotech companies and 69 academic institutions will take part.

 

In his letter and opening remarks to the conference, Dr. Pacifici outlined how CHDI has reorganized its scientific-thematic approach to “better align” its activities “with this burgeoning body of knowledge.”

 

The conference, following such themes, will focus on new research into the roles of mutant huntingtin DNA, RNA, and protein in HD. Conference-goers also will focus on the hot topic of somatic instability, the tendency of the deleterious expansion of the DNA to worsen with age and therefore trigger disease onset.

 

A caregiver’s moving keynote and a vital TED Talk

 

Following Dr. Pacifici’s overview, the audience watched a deeply moving 80-minute keynote speech, not to be shared publicly, by Cheryl Sullivan Stavely, RN. Stavely recounted her 30-plus years as an advocate and caregiver to her late husband John and daughter Meghan, who both succumbed to HD.

 

Stavely thanked the scientists for their dedication and said she hoped that 30 years from now HD conferences will become unnecessary with the development of treatments.

 

Choking up at Stavely’s recollections of Meghan, I found the keynote highly effective in summing up the many health and social challenges faced by HD-affected people and their families such as the affected person losing the ability to work and making insurance and end-of-life arrangements.

 

Scroll to the end of this article for photos of Stavely’s presentation and others.

 

Earlier, I interviewed leading HD global advocate, Emmy Award winning television journalist, and fellow HD gene expansion carrier Charles Sabine about his compelling TED Talk “The Unlimited Capability of Every Human.” Launched on February 1, the talk already has had 4,500 views.

 

Sabine stressed the importance of making the presentation “gather viral momentum” and transform the way HD is viewed by the general public everywhere. I will explore the implications of Sabine’s vital talk in a future article.

 

Stay tuned for further coverage of the therapeutics conference. 

 


Displaying a slide of daughter Meghan, Cheryl Sullivan Stavely delivers the keynote address at the 19th HD Therapeutics Conference, February 26, 2024 (this and the photos below by Gene Veritas, aka Kenneth P. Serbin).



The audience watching Stavely's presentation


Cheryl Sullivan Stavely and husband Kevin Stavely

 

Leslie Thompson, Ph.D., of the University of California, Irvine, greeting Kevin and Cheryl Stavely

 

Stavely with Karen Anderson, M.D., of Georgetown University

 


Stavely (left) with Haiying Tang, Ph.D., of CHDI and Wenzhen Duan, M.D., Ph.D., of Johns Hopkins University
 

Monday, February 12, 2024

Scientists interacting with Huntington’s disease patients in the quest for therapies

 

In the quest for Huntington’s disease therapies, scientists have found key intellectual fuel for understanding the genetics of this fatal neurodegenerative disorder and developing therapies.

 

A brainstorming strategy became the trademark of the HD-focused Hereditary Disease Foundation (HDF), founded in 1974 by leading Los Angeles psychoanalyst and HD activist Milton Wexler as an offshoot of the Huntington’s Disease Society of America (HDSA).

 

Wexler organized multidisciplinary small workshops of scientists aimed at spontaneous discussion – as opposed to dry scientific presentations with slides – to search for the HD gene and develop treatments (click here to read more).

 

Allan Tobin, Ph.D., the former director of the Brain Research Institute at the University of California, Los Angeles (UCLA), ran hundreds of workshops for the HDF and later for CHDI Foundation, Inc. (CHDI), today the main private funder of HD therapeutic research.

 

Involving the affected

 

Many scientists have had little or no contact with HD families, so the HDF has included individuals from those families in its workshops. I was exposed to this approach in 2012, when Dr. Tobin transformed my desire to simply blog about a CHDI workshop into an event that included a 90-minute discussion of HD’s health and social ramifications based on my family’s story.

 

On the morning of January 30, I once again interacted with HD scientists, answering an invitation from HDF CEO Meghan Donaldson to offer my “perspective as both a family member and someone who is gene-positive,” aiming to help connect researchers “to the patients and the disease and to strengthen their resolve for finding a treatment.”

 

I not only spoke about my HD journey but also exchanged ideas with the scientists about their mission of developing therapies and also the many challenges faced by the HD community.

 

For me, exploring science with researchers serves as both mental enrichment and coping mechanism as I strive to forestall what research predicts will be my inevitable HD onset. Of course, I hoped to contribute to the scientific mission.

 


At the workshop: seated, from left to right, Mahmoud Pouladi, M.Sc., Ph.D., Osama Al Dalahmah, M.D., Ph.D., Ashley Robbins, Gene Veritas (aka Kenneth P. Serbin), Sarah Hernandez, Ph.D., William Yang, M.D., Ph.D. Standing, from left to right, Xinhong Chen, Andrew Yoo, Ph.D., Anton Reiner, Ph.D., Baljit Khakh, Ph.D., Nicole Calakos, M.D., Ph.D., Ed Lein, Ph.D., Beverly Davidson, Ph.D., Nathaniel Heintz, Ph.D., Harry Orr, Ph.D., Leslie Thompson, Ph.D., Myriam Heiman, Ph.D., Shawn Davidson, Ph.D., Steven Finkbeiner, M.D., Ph.D., Roy Maimon, Ph.D. (photo by Julie Porter, HDF) (Click on the image to enlarge it.)

 

Pondering modifier genes and a proactive approach

 

My 80-minute encounter with 20 scientists kicked off the two-day HDF Milton Wexler Interdisciplinary Workshop, held at the Huntley Hotel in Santa Monica, CA.

 

To provide background, before the meeting HDF Director of Research Programs Sarah Hernandez, Ph.D., sent the participants a copy of my article “Striving for a Realistic and Unapologetic View of Huntington’s Disease” from the Journal of Huntington’s Disease.

 

With the HDF’s permission, I recorded my remarks and Q & A with the scientists. As is customary, the confidential, scientific portion of the workshop was not recorded, to encourage uninhibited brainstorming.

 

After Dr. Sarah Hernandez introduced me, I gave an overview of my family’s fight against HD, including my mother’s diagnosis with the disorder in 1995, the genetic test revealing my risk in 1999, my gradual exit from the “terrible and lonely HD closet,” and strategies for delaying onset.

 

I discussed the possible key role of modifier genes in enabling me to reach the age of 64 still fully functioning – in contrast with my mother, whose symptoms began in her late 40s, ending with her death at the age of 68 (click here to read more).

 

Just before the meeting, I had discussed with two of the scientists that “maybe I should get my genome sequenced and find out if I actually have any of those modifier genes,” I told the scientists.

 

I noted, however, that no routine genetic tests exist for these genes and that establishing them might “open a whole new Pandora's box of bioethical considerations,” given the potential for unsettling messages. We'd have to have new protocols.”

 

“So, yes, I think it might be good to have those tests, but we've got to think very carefully about jumping into that,” I said. “But maybe for science, I could do my own whole genome sequence and write a blog article about it and analyze my modifier genes.”

 

I stressed that a “proactive approach is absolutely essential.” That option was unavailable to my mother, the first person to develop HD in an extended family with no knowledge of the disease.

 

Seeking to manage HD

 

The scientists probed various facets of my family’s HD experience and my advocacy.

 

I explained the importance of the HDSA-San Diego support group in providing vital information about such matters as genetic testing and obtaining long-term care insurance. I also discussed my timeline for testing and how I did so anonymously. I reflected on how my colleagues at the University of San Diego reacted positively to my exit from the closet and the full-throated advocacy that I could now pursue.

 

The concerns about discrimination led me to underscore the importance of the Affordable Care Act and the Genetic Information Nondiscrimination Act in eliminating discrimination against those with preexisting conditions.

 

Some wanted to know about the very difficult social and psychological challenges involved in genetic testing, and how to convince those worried about HD to reach out to medical professionals. 

 

Given how devastating the discovery of HD in a family can be, I advocated a “gentle” and gradual approach to getting people involved, recalling that research studies such as Enroll-HD allow people to participate anonymously and without knowing their genetic test results.

 

I pointed out that, despite the fear and devastation associated with HD, today the HD community has real hopes for clinical trials of HD-specific remedies. Such hope did not exist a quarter-century ago. As I tell younger people just starting their struggle against HD, although “there may not be the magic bullet,” HD might ultimately be “managed like other diseases are managed like heart disease, diabetes, and HIV.”

 

Involving presymptomatic people in trials

 

I was both humbled and thrilled that the scientists wanted my observations on various aspects of the search for therapies.

 

In my opening remarks, I had stated that, in comparison with the start of my HD journey in the late 1990s, thankfully it has been harder for me to track the progress because of so many research and clinical trial programs. In her introduction, Dr. Hernandez noted that I am at work on a biosocial history of the HD movement.

 

UCLA neuroscientist Baljit Khakh, Ph.D., asked whether I could identify “errors” to be avoided or “strengths” to be reproduced, as well as trends worth noting.

 

In response, I expressed my frustration about the lack of opportunity for presymptomatic gene carriers like me to participate in clinical trials. The now defunct Triplet Therapeutics, Inc., had planned such a trial, I observed, and that the Alzheimer’s disease field has had such a trial.

 

“We're a valuable resource,” I said, recognizing that such trials require approval by the U.S. Food and Drug Administration and also involve bioethical and financial considerations.

 

However, I also observed that “the field's done a great job of trying to diversify [drug] targets,” because of the many types of approaches under research.

 

Addressing the cognitive deficit

 

Nathaniel Heintz, Ph.D., of The Rockefeller University asked about the importance of clinical trials to test drugs to treat just symptoms, without modifying the course of the disease. Treatments developed for other diseases, like Parkinson’s, benefit millions, he noted, but does HD as a rare disease face a greater challenge to attract trial volunteers?

 

I observed that HD now has three treatments for chorea, the involuntary, dancelike movements experienced by many of the affected.

 

However, I also pointed out that HD clinical trials are very U.S.- and Europe-based, avoiding important countries such as Brazil, which was not included in Enroll-HD. I observed how HD families in Brazil and other parts of the world are “desperate to participate in clinical trials.”

 

Xinhong Chen, a lab researchers at the California Institute of Technology, touched on another facet of Dr. Heintz’s question: what symptoms do people most want treated to improve their quality of life?

 

I pointed to the importance of reducing the “cognitive deficit” that occurs with HD and prevents people from engaging in daily functions, caring for themselves, and communicating with others. I added that I had hoped to take pridopidine, a pill developed for this purpose. Sadly, the pridopidine trial failed in April 2023.

 

Andrew Yoo, Ph.D., of Washington University in St. Louis, wanted to know how to overcome the lack of interest in HD and related research in his native South Korea.

 

The leadership of the HDF, CHDI, HDSA, and the Huntington Study Group (HSG) should push for greater “diversity” on the international level, I said, suggesting that the HSG could send a delegation to South Korea. Also, advocates and medical personnel can spur action on HD, Alzheimer’s, and other neurodegenerative diseases by alerting people to the caregiving crisis, which is global, I observed.

 

The scientists get down to business

 

I was energized by my exchange with the scientists.

 

After my session, the workshop participants took up the main business of the rest of that day and the next: “cell type specific biology in Huntington’s disease.”

 

That activity was chaired by William Yang, M.D., Ph.D., of UCLA, Myriam Heiman, Ph.D., of the Massachusetts Institute of Technology, and Steven Finkbeiner, M.D., Ph.D., of the University of California, San Francisco.

 

Through their brainstorming – the first session of which I observed – the participants aimed to advance ideas for HD therapies.

 

On January 29, I lunched with Dr. Yang, gave a slide presentation on my advocacy to his research team, and toured his lab. I also interviewed Dr. Yang on his latest research.

 

Stay tuned for my next article: Dr. Yang’s long interest in HD and his enthusiastic outlook for potential therapies.

 

Disclosure: the Hereditary Disease Foundation covered my workshop travel expenses.

 


Gene Veritas (left) with Dr. William Yang in his UCLA office. In the background: a medium spiny neuron, one of the brain cells most affected by Huntington’s disease (photo Nan Wang, Ph.D., of the Yang Research Group).